Wang Jindong, Li Yunfeng, Zhao Haiyang, Li Yanyang. Improvement of Maximum Correlation Kurtosis Deconvolution and its Application in Fault Diagnosis of Reciprocating Compressor Air Valve[J].Petro-chemical Equipment Technology, 2021, 42(6): 35-40,52.
[1] 刘岩. 基于变分模态分解与奇异谱分析的往复压缩机典型故障预示研究[D]. 大庆:东北石油大学,2018.
[2] 柴兴亮,刘薇娜. 基于改进CEEMDAN和多尺度模糊熵的气阀故障诊断[J]. 组合机床与自动化加工技术,2020,(10):140-143,147.
[3] 齐咏生,刘飞,高学金,等. 基于MCKD和teager能量算子的滚动轴承复合故障诊断[J]. 大连理工大学学报,2019,59(1):35-44.
[4] MCDONALD G L, ZHAO Q, ZUO M J. Maximum Correlated Kurtosis Deconvolution and Application on Gear Tooth Chip Fault Detection[J]. Mechanical Systems and Signal Processing, 2012,33: 237-255.
[5] 杨斌,张家玮,王建国,等. 基于CEEMD和自适应MCKD诊断滚动轴承早期故障[J]. 北京工业大学学报,2019,45(2):111-118.
[6] 张晓涛,唐力伟,王平,等. 基于改进MCKD方法的声发射信号降噪[J]. 机械设计与研究,2015,31(1):70-73,77.
[7] 张晓涛,唐力伟,王平,等. 最小周期相关熵解卷积结合窄带解调的轴承复合故障诊断研究[J]. 振动工程学报,2015,28(4):666-672.
[8] 李从志,郑近德,潘海洋,等. 基于自适应多尺度散布熵的滚动轴承故障诊断方法[J]. 噪声与振动控制,2018,38(5):173-179.
[9] CHEN W T, WANG Z Z, XIE H B, et al. Characterization of Surface EMG Signal Based on Fuzzy Entropy[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(2): 266-272.
[10]郑近德,陈敏均,程军圣,等. 多尺度模糊熵及其在滚动轴承故障诊断中的应用[J]. 振动工程学报,2014,27(1):145-151.
[11]WU S D, WU C W, LIN S G, et al. Time Series Analysis Using Composite Multiscale Entropy[J]. Entropy, 2013, 15(3): 1069-1084.
[12]王桥梅,吴浩,胡潇涛,等. 基于VMD多尺度模糊熵的HVDC输电线路故障识别方法[J]. 电力系统及其自动化学报,2021,33(5):134-144.