石油化工设备技术 ›› 2024, Vol. 45 ›› Issue (6): 1-4,30.doi: 10.3969/j.issn.1006-8805.2024.06.001

• 静设备 •    

基于XGBoost的石化设备安全阀失效风险预测方法研究

陈中官1,袁文彬2,程 伟袁文彬2   

  1. 1. 中国石油化工股份有限公司镇海炼化分公司,浙江 宁波 315207;
    2. 合肥通用机械研究院有限公司,安徽 合肥 230031
  • 收稿日期:2024-06-08 接受日期:2024-10-31 出版日期:2024-11-15 发布日期:2024-11-15
  • 作者简介:陈中官,男,2007年毕业于昆明理工大学化工机械专业,硕士,主要从事石化设备管理工作,高级工程师。
  • 基金资助:
    安徽省科学技术厅(批准号:202203a07020001)资助的课题;
    中国石油化工股份有限公司(批准号:30650601-22-FW1703-0023)资助的课题

Research on Prediction Method for Safety Valve Failure Risk in Petrochemical Equipment Based on XGBoost

Chen Zhongguan1, Yuan Wenbin2, Cheng Wei2   

  1. 1. SINOPEC Zhenhai Refining & Chemical Company, Ningbo, Zhejiang, 315207;
    2. Hefei General Machinery Research Institute Co., Ltd., Hefei, Anhui, 230031
  • Received:2024-06-08 Accepted:2024-10-31 Online:2024-11-15 Published:2024-11-15

摘要: 安全阀是保障石化设备安全的最后一道屏障,对安全阀失效风险的预测越准确,越有利于石化设备的安全长周期运行和安全阀检修计划的合理安排。为高效准确预测安全阀的失效风险,提出一种基于XGBoost算法的安全阀失效风险评估方法。该方法是一种基于数据驱动的预测方法,采用XGBoost算法建模,优选影响安全阀失效风险的关键特征参量来实现安全阀失效风险的预测。实验数据表明,该方法对安全阀失效风险预测结果良好,在安全阀测试集上准确率为94.0%,优于传统机器学习方法的精度。此外,该方法还可为安全阀校验周期的确定提供参考依据。

关键词: 安全阀, XGBoost, 特征筛选, 风险预测

Abstract: The safety valve is the last barrier to ensure the safety of petrochemical equipment. The more accurate the prediction of the risk of safety valve failure, the more conducive it is to the safe long-term operation of petrochemical equipment and the reasonable arrangement of safety valve maintenance plans. To efficiently and accurately predict the failure risk of safety valves, a risk assessment method based on XGBoost algorithm for safety valve failure is proposed. The method is a data-driven prediction method based on the XGBoost algorithm modelling, and the key feature parameters affecting the failure risk of safety valves are preferred to predict safety valve failure risk. The experimental data indicate that this method has good performance in predicting safety valve failure risk with an accuracy of 94.0% on the safety valve test set, which is better than the accuracy of traditional machine learning methods. In addition, this method can also provide reference basis for the determination of test and calibration cycle of safety valves.

Key words: safety valve, XGBoost, feature screening, risk prediction