石油化工设备技术 ›› 2019, Vol. 48 ›› Issue (2): 43-48.doi: 10.3969/j.issn.1006-8805.2019.02.011

• 清洁生产与综合治理 • 上一篇    下一篇

槽式太阳能辅助蒸汽发生器集热系统的优化设计

荣辉1,张阳1,袁江如2,常峥1   

  1. 1. 北京石油化工学院机械工程学院,北京 102617;
    2. 中国石油天然气股份有限公司勘探开发研究院,北京 100083
  • 收稿日期:2018-07-18 接受日期:2019-02-25 出版日期:2019-06-13 发布日期:2019-06-13
  • 作者简介:荣辉,男,现为北京石油化工学院能源与动力工程专业在读本科生。Email:rhsteven@yeah.net

Optimization Design for Heat Collection System Using Steam Generator Assisted by Trough Solar Collector

Rong Hui1, Zhang Yang1, Yuan Jiangru2, Chang Zheng1   

  1. 1. Beijing Institute of Petrochemical Technology, Beijing, 102617;
    2. PetroChina Exploration & Development Research Institute, Beijing, 100000
  • Received:2018-07-18 Accepted:2019-02-25 Online:2019-06-13 Published:2019-06-13

摘要: 槽式太阳能集热技术用于稠油开采是光热发电技术的转型,将槽式太阳能蒸汽发生器用于稠油开采可有效降低采油工艺的常规能源能耗,保护环境。本设计以新疆塔河油田TK921单井现有热采蒸汽系统为对象,引入槽式太阳能蒸发器进行系统改造,并对槽式太阳能蒸发器集热系统进行优化设计。首先,根据节能低成本的原则,对满足全天候热采工艺热负荷需求的槽式太阳能辅助蒸汽发生器集热系统提出了一套系统的优化设计方法;其次,通过构建槽式太阳能蒸发器集热系统的费用年值模型加太阳能保证率与系统总成本的关系,建立了系统的多目标优化模型;最后,采用MATLAB遗传算法对优化目标模型进行优化求解计算,由分析多目标函数的Pareto非劣解集,得出最佳的集热器面积值。

关键词: 槽式太阳能集热系统, 多目标优化, 遗传算法, Pareto非劣解, 集热器面积

Abstract: Adopting trough solar steam generator for heavy oil exploitation is the transformation of solar-thermal power generation technology, which can reduce energy consumption of conventional energy sources effectively and protect the environment. This paper takes the existing thermal process steam system of TK-921 single well in Xinjiang Tahe Oilfield as the object. Trough solar steam generator is introduced for system transformation, and the design of trough solar steam generator system is optimized. First, according to principles of energy saving and low cost, an optimized design method for the heat collection system using a steam generator assisted with the trough solar collector is proposed to meet the demand on heat loads in the all-weather thermal recovery process. Then a multi-objective optimization model for the system is established by constructing the annual cost model of the heat collection system using a steam generator assisted with the trough solar collector and together with the relationship among the annual cost model, the solar guarantee rate and the total cost of the system. Finally, the optimal target model is calculated by using MATLAB genetic algorithm, and the optimal collector area value is obtained by analyzing the Pareto non-inferior solution set of multi-objective function.

Key words: trough solar collector system, multi-objective optimization, genetic algorithm, Pareto noninferiority solution, Collector area