石油化工设备技术 ›› 2022, Vol. 43 ›› Issue (3): 29-36.doi: 10.3969/j.issn.1006-8805.2022.03.006

• 动设备 • 上一篇    下一篇

催化装置主风机组预知性维修研究

孙宝平   

  1. 中国石化工程建设有限公司,北京 100101
  • 收稿日期:2022-02-10 接受日期:2022-04-29 出版日期:2022-06-22 发布日期:2022-06-22
  • 作者简介:孙宝平,男,2021年毕业于清华大学工业工程系工程管理专业,工程管理硕士,从事工程管理与数字化服务研究工作,高级工程师,已发表论文5篇。

Research on Predictive Maintenance of Main Air Blower Set in FCC Unit

Sun Baoping   

  1. SINOPEC Engineering Incorporation, Beijing, 100101
  • Received:2022-02-10 Accepted:2022-04-29 Online:2022-06-22 Published:2022-06-22

摘要: 催化装置主风机组受操作条件影响,运行故障率相对较高,机组振动劣化持续时间长,机组故障诊断与健康管理(PHM)水平有待提升。文章以某石化公司的主风机组检修为例进行研究,基于长短期记忆网络建立训练预测模型,对机组振动异常阶段的数据进行采集和训练,预测拟合机组振动趋势,并在此基础上对故障处置动作和检、维修时机提出优化建议,在预知性维修方面做出尝试,实现机组健康管理提升。

关键词: 设备健康管理, 趋势预测, 长短期记忆网络, 检修方案优化

Abstract: The main air blower set of catalytic unit is affected by operating conditions; the operation failure rate is relatively high; the duration of unit vibration degradation is long; and the level of Prognostics and Health Management (PHM) needs to be improved. Taking the maintenance of a petrochemical main air blower set as an example, this paper establishes a training prediction model based on the long short-term memory networks which collects and trains the data in the abnormal stage of unit vibration, predicts and fits the vibration trend of the unit. Then it puts forward optimization suggestions on the fault handling action and the timing of inspection and maintenance, and makes an attempt at predictive maintenance. These help torealize the improvement of unit health management.

Key words: equipment health management, trend forecast, long short-term memory network, maintenance scheme optimization