[1] 王克鸿,黄勇,孙勇,等. 数字化焊接技术研究现状与趋势[J]. 机械制造与自动化,2015,44(5):1-6.
[2] 李巍,魏艳红. 焊接工程数据库系统综述[J]. 焊接,2006(11):17-21.
[3] A. A. ADEKUNLE, S. B. ADEJUYIGBE. Computer Aided Design Software Development for Welding Hollow Cylinder.[J]. Journal of American Science 2012, 8(7).
[4] 魏艳红,张玉莲. 焊接工艺智能设计研究进展[J]. 电焊机,2020,50(9):213-220.
[5] 朱若凡,聂加俊,郑惠锦. 基于MySQL和BP神经网络的船舶焊接专家库软件研发[J]. 造船技术,2021,49(4):27-32.
[6] 刘永,王克鸿,杜姗姗,等. 焊接坡口特征设计与焊缝特征提取方法[J]. 焊接学报,2006,27(10):61-64.
[7] 王克鸿, 韩杰, 李帅,等. 重型车辆计算机辅助焊接工艺自动设计系统[J]. 焊接学报,2005,26(10):5-8.
[8] 钱晓军,沈春龙,王克鸿,等. 压力容器工艺评定规则组织与推导流程设计[J]. 焊接,2007(11):49-52.
[9] 马国辉, 田凌, 刘思超, 等. 基于知识工程的船体焊接工艺研究[J]. 图学学报, 2020, 41(3): 430-437.
[10]凡天娣,景旭文,肖志建,等. 基于本体的船舶焊接工艺知识图谱构建[J]. 电焊机,2019,49(12):8-13.
[11]魏世海,陈千,姚飚,等. 基于流水线的船厂管加工车间MES设计与应用[J]. 造船技术,2023,51(3):86-92.
[12]杨增海. 数字化装焊车间焊缝识别与参数自动下达技术[D]. 南京:南京理工大学,2016.
[13]张磊,王博健,刘满雨,等. 窄间隙埋弧焊机信息化管理系统[J]. 电焊机,2022,52(12):108-113.
[14]朱韩钢,邢小龙. 造船焊接信息化管理[J]. 江苏船舶,2014,31(6):28-30.
[15]刘富强, 王宝. 汉诺威弧焊质量分析系统及其在焊接材料测试技术中的应用[J]. 兵器材料科学与工程, 2008, 31(2): 87-90.
[16]WU C S, POLTE T. Gas Metal Arc Welding Process Monitoring and Quality Evaluation Using Neural Networks[J]. Science & Technology of Welding & Joining, 2000, 5(5): 324-328.
[17]CAO B, XIANG Y P, LV X Q, et al. Approximate Entropy——a New Statistic to Quantify Arc and Welding Process Stability in Short-Circuiting Gas Metal Arc Welding[J]. Chinese Physics B, 2008, 17(3): 865-877.
[18]HUANG Y M, ZHANG Z F, CHEN H B, et al. EMD-Based Pulsed TIG Welding Process Porosity Defect Detection and Defect Diagnosis Using GA-SVM[J]. Journal of Materials Processing Technology, 2017, 239: 92-102.
[19]He K, Li X J. A Quantitative Estimation Technique for Welding Quality Using Local Mean Decomposition and Support Vector Machine[J]. Journal of Intelligent Manufacturing, 2016, 27(3): 525-533.
[20]KOVACEVIC R, ZHANG Y M, RUAN S. Sensing and Control of Weld Pool Geometry for Automated GTA Welding[J]. Journal of Manufacturing Science and Engineering, 1995, 117(2): 210-222.
[21]ZHANG Z, CHEN H, XU Y, et al. Multisensor-Based Real-Time Quality Monitoring by Means of Feature Extraction, Selection and Modeling for Al Alloy in Arc Welding[J]. Mechanical Systems and Signal Processing, 2015, 60: 151-165.
[22]CHUNYANG XIA, ZENGXI PAN, YUXING LI, et al. Vision-Based Melt Pool Monitoring for Wire-Arc Additive Manufacturing Using Deep Learning Method[J]. International Journal of Advanced Manufacturing Technology, 2022, 120(1-2): 551-562.
[23]NOMURA K, YOSHII K, TODA K, et al. 3D Measurement of Temperature and Metal Vapor Concentration in MIG Arc Plasma Using a Multidirectional Spectroscopic Method[J]. Journal of Physics D: Applied Physics,2017,50:425205.
[24]熊俊. 多层单道GMA增材制造成形特性及熔敷尺寸控制[D]. 哈尔滨:哈尔滨业大学,2014.
[25]CHEN C, XIAO R Q, CHEN H B, et al. Prediction of Welding Quality Characteristics During Pulsed GTAW Process of Aluminum Alloy by Multisensory Fusion and Hybrid Network Model[J]. Journal of Manufacturing Processes,2021,68:209-224.
[26]万柴志. 基于多传感复合的电弧增材制造在线监测系统研究[D]. 武汉: 华中科技大学,2018.
[27]XIA C Y, PAN Z X, POLDEN J. A Review on Wire arc Additive Manufacturing: Monitoring, Control and a Framework of Automated System[J]. Journal of Manufacturing Systems, 2020,57:31-45.
[28]李再兴,刘金龙,远东,等. 基于IOT的焊接设备监控系统设计[J]. 电焊机,2019,49(3):53-56.
[29]董娜,陈弈,黄安立,等. 基于5G通信的焊接设备远程控系统设计与实现[J]. 电焊机,2022,52(1):7-16.
[30]苗文玲, 晁福田, 崔庆华. 基于工业互联网平台的智能焊接云系统[J]. 数码设计, 2022(12): 81-84.
[31]张兰,齐晓雷,赵智江. 焊接物联网云平台设计[J]. 电焊机,2019,49(10):62-65.
[32]R. S. BAROT, VIRAL PATEL. Development and Investigations of IoT Enabled Wire Feed and Weld Speed Measurement for Submerged Arc Welding[J]. MAPAN,2022,37(4):741-751.
[33]朱俊杰,杨成本,蔡艳,等. 基于ZigBee技术的焊接电源群组化监测系统设计[J]. 电焊机,2011,41(1):24-27.
[34]王克鸿,杨燕,王波. 基于网络的焊接工艺信息发布平台的建立[J]. 焊接学报,2006,27(10):11-14.
[35]吴统立,王克鸿,杨嘉佳,等. 焊接过程参数传感采集系统以太网接口设计[J]. 电焊机,2017,47(11):71-76.
[36]许州, 陈浩, 王远, 等. 管道焊接射线数字化检测与评估系统[J]. 高科技与产业化, 2008(1):103-104.
[37]乔立强. 一种数字化智能焊接质量无损检测系统研制[J]. 焊接技术,2012,41(1):37-39.
[38]李雪蒙,冯晓伟,李俊,等. 一种新型数字化评片技术在LNG接收站项目上的应用[J]. 石油和化工设备,2023,26(5):75-78,92. |