石油化工设备技术 ›› 2025, Vol. 46 ›› Issue (2): 49-54,60.doi: 10.3969/j.issn.1006-8805.2025.02.011

• 状态监测与分析 • 上一篇    

基于卷积神经网络识别焊接缺陷与数据源倍增

李海华1,李 维2,梁 伟3,黄雪江3   

  1. 1. 克拉玛依职业技术学院,新疆 克拉玛依 834000;
    2. 中国石油天然气股份有限公司独石化分公司消防内保支队气防站,新疆 独山子 833600;
    3. 陕西振华检测科技有限公司,陕西 西安 710000
  • 收稿日期:2024-10-11 接受日期:2025-02-28 出版日期:2025-03-15 发布日期:2025-03-21
  • 作者简介:李海华,男,1995年毕业于华东理工大学无损检测专业,主要从事焊接检测、承压设备检验检测、机械教学等工作,教师,高级工程师。

Recognition of Welding Defects and Data Source Doubling Based on Convolutional Neural Networks

Li Haihua1, Li Wei2, Liang Wei3, Huang Xuejiang3   

  1. 1. SINOPEC Fourth Construction Co., Ltd., Tianjin, 300270;
    2. China Petrochemical Corporation, Beijing, 100728;
    3. SINOPEC Engineering Incorporation, Beijing, 100101
  • Received:2024-10-11 Accepted:2025-02-28 Online:2025-03-15 Published:2025-03-21

摘要: 计算机识别化工设备与管道的焊接检测底片中的缺陷,是近年来检测行业研究的难点和热点。由于专业领域的局限,要想做好底片缺陷的自动识别,焊接检测的专业技术人员与图像识别专业软件工程人员之间应相互学习。检测技术人员应该了解掌握卷积神经网络的初步理论,以及卷积神经网络模拟人脑神经进行深度学习并最终识别焊接检测底片缺陷的完整过程。同样的,图像识别专业软件工程人员也需要了解掌握射线检测专业技术。文章就卷积神经网络的初步理论以及利用卷积神经网络进行缺陷识别的过程进行了阐述,同时,针对典型缺陷影像数据源有欠缺的问题,从射线检测实际工艺角度出发,依据现场实践和多年评片经验,对数据源库进行了扩充。实际验证证明,上述改进取得了较好的效果。

关键词: 焊接检测, 深度学习, 卷积神经网络, 数据源库, 扩充

Abstract: Computer recognition of defects in weld testing negative films of chemical equipment and pipelines is a difficult and hot topic in the testing industry in recent years. Due to the limitations of the professional fields, weld testing professionals and image recognition software engineers should learn from each other if they want to do a good job in automatic identification of negative film defects. Testing technicians should understand and master the preliminary theory of convolutional neural network, understand the complete process of convolutional neural network simulating human brain nerves, and conduct in-depth learning to finally identify the defects of weld testing negative films. Similarly, software engineers specializing in image recognition also need to understand and master the expertise of radiographic testing. This paper elaborates on the preliminary theory of convolutional neural network and the process of defect recognition using convolutional neural network. Meanwhile, aiming at the lack of data sources of typical defective images, the data source library is expanded from the perspective of actual radiographic testing based on the on-site practice and many years of experience in film evaluation. Practical verification proves that the above improvements have achieved better results.

Key words: weld testing, deep learning, convolution neural network, data source library, expansion