石油化工设备技术 ›› 2025, Vol. 46 ›› Issue (5): 40-46,55.doi: 10.3969/j.issn.1006-8805.2025.05.007

• 减排与绿色能源 • 上一篇    下一篇

Ⅳ型储氢气瓶瓶阀沟槽结构对O形密封圈影响的有限元分析

王 超1,潘子彤2,张 为3   

  1. 1. 长春光华学院机械工程学院,吉林 长春 130033;
    2. 中国石化工程建设有限公司,北京 100101;
    3. 长春理工大学机电工程学院,吉林 长春 130022
  • 收稿日期:2024-11-04 修回日期:2025-08-31 接受日期:2025-08-29 出版日期:2025-09-16 发布日期:2025-09-16
  • 通讯作者: 张 为 E-mail:1158892338@qq.com
  • 作者简介:王超,男,2025年毕业于长春理工大学机械专业,硕士,主要从事氢能装备的密封性能和失效机理研究,讲师。
  • 基金资助:
    吉林省科学技术厅(批准号:20250102146JC)资助的课题

Finite Element Analysis of the Influence of Groove Structure on O-ring Sealing in Type IV Hydrogen Storage Cylinders

Wang Chao1, Pan Zitong2, Zhang Wei3   

  1. 1. School of Mechanical Engineering, Changchun Guanghua University, Changchun, Jilin, 130033;
    2. SI-NOPEC Engineering Incorporation, Beijing, 100101;
    3. School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022
  • Received:2024-11-04 Revised:2025-08-31 Accepted:2025-08-29 Online:2025-09-16 Published:2025-09-16
  • Contact: Zhang Wei E-mail:1158892338@qq.com

摘要: 储氢气瓶内储存的介质是高压氢气,一旦发生泄漏,将引发严重的安全事故。高压储氢气瓶阀门常采用O形圈进行密封,由于该处的O形圈直接受到高压氢气的渗透和压力影响,可能导致其密封性能发生变化,进而影响阀门的整体密封效果。为此,文章以提升Ⅳ型储氢气瓶瓶阀沟槽结构的密封性能和使用寿命为目标,采用自主研发的氢气试验装置模拟了实际工况下O形圈受氢气影响的情况,并利用O形圈的压缩性能测试结果拟合得到了材料的本构方程。此外,还对瓶阀沟槽进行了仿真分析,探讨了不同沟槽底角度数对最大等效应力的影响。研究发现:沟槽底角为100°时,无论在氢气试验前还是试验后,O形圈所受到的最大等效应力均最小;在沟槽底角为100°的条件下,氢气试验后O形圈所受到的最大等效应力较氢气试验前降低了21.0%,而采用传统沟槽结构时,该应力值只降低了14.3%;同时,在受到氢气影响的情况下,相较于传统瓶阀沟槽结构,采用底角为100°的斜坡沟槽结构时,O形圈的最大等效应力降低了6.6%,且应力集中区域分布更加均匀。

关键词: O形圈, 有限元模拟, 优化沟槽, 等效应力

Abstract: The medium stored in the hydrogen storage cylinder is high-pressure hydrogen, which will cause serious safety accidents once a leak occurs. The valve of hydrogen storage cylinders typically employ O-rings for sealing. Due to direct exposure to high-pressure hydrogen permeation and pressure, the sealing performance may change, thereby affecting the overall sealing effect of the valve. Therefore, with the goal of improving the sealing performance and service life of the valve groove structure of Type IV hydrogen storage cylinders, this paper adopts a self-developed hydrogen test device to simulate the influence of hydrogen on the O-ring under actual working conditions and uses the test results of the compressive properties of the O-ring to fit the constitutive equation of the material. In addition, the simulation analysis of the grooves of the bottle valve is also carried out to study the influence of varying groove bottom angles on the maximum equivalent stress. It is found that the maximum equivalent stress of the O-ring before and after the hydrogen test is the smallest when the groove bottom angle is 100°, and the maximum equivalent stress of the O-ring at this angle is reduced by 21.0% compared to that prior to the hydrogen test, whereas the stress reduction is only 14.3% when adopting the conventional groove design. Meanwhile, under the influence of hydrogen, the maximum equivalent stress of the O-ring is reduced by 6.6% when adopting a ramp groove structure with a bottom angle of 100°, compared to the conventional groove design of bottle valve. And the stress concentration distribution becomes more uniform.