[1] YANG I H, SHIN C B, KIM T H. A Three-Dimensional Simulation of a Hydrocyclone for the Sludge Separation in Water Purifying Plants and Comparison with Experimental Data[J]. Minerals Engineering, 2004,17(5): 637-641.
[2] NEESSE T, DUECK J. Dynamic Modeling of the Hydrocyclone[J]. Minerals Engineering, 2007,20(4): 380-386.
[3] EVANS W K, SUKSANGPANOMRUNG A, NOWAKOWSKI A F. The Simulation of the Flow within a Hydrocyclone Operating with an Air Core and with an Inserted Metal Rod[J]. Chemical Engineering Journal, 2008,143(1/3): 51-61.
[4] 化学工业部教育培训中心. 液相非均一系分离[M]. 北京:化学工业出版社,1997:65.
[5] OLSON T J, VAN OMMEN R. Optimizing Hydrocyclone Design Using Advanced CFD Model[J]. Minerals Engineering, 2004, 17(5): 713-220.
[6] RIETEMA K. Performance and Design of Hydrocyclones I: General Considerations[J]. Chemical Engineering Science, 1961,15(3-4): 298-301.
[7] VAN DUIJN G, RIETEMA K. Performance of a Large-Cone-Angle Hydrocyclone I: Hydrodynamics[J]. Chemical Engineering Science, 1983,38(10): 1651-1661.
[8] KELSALL D F. A Study of the Motion of Solid Particles in a Hydraulic Cyclone[J]. Transactions of Institution of Chemical Engineers, 1952(30): 87-103.
[9] VIEIRA L G M,DAMASCENO J J R,BARROZO M A S. Improvement of Hydrocyclone Separation Performance by Incorporating a Conical Filtering Wall[J]. Chemical Engineering and Processing, 2010, 49(5): 460-467.
[10]HAIDER A, LEVENSPIEL O. Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles[J]. Powder Technology, 1989, 58(1): 63-70.
[11]DELGADILLO J A,RAJAMANI R K. Exploration of Hydrocyclone Designs Using Computational Fluid Dynamics[J]. International Journal of Mine-ral Processing, 2007, 84(1-4): 252-261.
[12]ANSYS Inc. Fluent 6.3.26 Users Guide[M]. USA: ANSYS Inc, 2008: 22. |