石油化工设备技术 ›› 2021, Vol. 42 ›› Issue (6): 35-40,52.doi: 10.3969/j.issn.1006-8805.2021.06.007

• 动设备 • 上一篇    

最大相关峭度解卷积的改进及在往复压缩机气阀故障诊断中的应用

王金东,李云峰,赵海洋,李彦阳   

  1. 东北石油大学机械科学与工程学院,黑龙江 大庆 163318
  • 收稿日期:2021-02-05 修回日期:2021-09-14 接受日期:2021-10-29 出版日期:2021-11-15 发布日期:2021-11-23
  • 通讯作者: 李云峰 E-mail:wjd@126.com
  • 作者简介:王金东,男,2000年获大连理工大学工程力学专业博士学位,主要研究领域为机械设备故障诊断、石油机械系统工程、先进制造技术等,教授。
  • 基金资助:
    黑龙江省自然科学基金项目(E2016009); 东北石油大学青年科学基金项目(2018ANC-31).

Improvement of Maximum Correlation Kurtosis Deconvolution and its Application in Fault Diagnosis of Reciprocating Compressor Air Valve

Wang Jindong, Li Yunfeng, Zhao Haiyang, Li Yanyang   

  1. School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318
  • Received:2021-02-05 Revised:2021-09-14 Accepted:2021-10-29 Online:2021-11-15 Published:2021-11-23
  • Contact: Li Yunfeng E-mail:wjd@126.com

摘要: 针对往复压缩机气阀振动信号受强烈气体波动干扰的特性,提出了一种基于改进最大相关峭度解卷积和精细复合多尺度模糊熵的往复压缩机气阀故障诊断方法。使用改进最大相关峭度解卷积对往复压缩机气阀振动信号进行解卷积处理,可有效地提取信号中的冲击成分;对处理后的信号进行精细复合多尺度模糊熵量化分析,获得往复压缩机气阀故障诊断的特征向量,将其输入到支持向量机对故障特征进行识别。往复压缩机气阀故障实验数据分析表明:该方法能够有效地提取出往复压缩机气阀的故障信息,实现往复压缩机气阀故障的精确诊断。

关键词: 最大相关峭度解卷积, 往复压缩机, 精细复合多尺度模糊熵, 气阀, 故障诊断

Abstract: The vibration signals of the air valve of the reciprocating compressor is interfered by strong gas fluctuations. Aiming at such characteristics, this paper proposes a fault diagnosis method based on improved maximum correlation kurtosis deconvolution (MCKD) and refined composite multi-scale fuzzy entropy (RCMFE). Deconvolution of vibration signals of reciprocating compressor air valve using improved maximum correlation kurtosis deconvolution can extract the shock components of the signals effectively; after the deconvolution, the signals are analyzed by adopting the refined composite multiscale fuzzy entropy quantization to obtain the feature vectors of the fault diagnosis of reciprocating compressor air valve and the feature vectors are input in the support vector machine for fault feature identification. The analysis of experimental data of reciprocating compressor air valve faults shows that this method can extract the fault information of reciprocating compressor air valve effectively and realize the accurate diagnosis of air valve faults of reciprocating compressor.

Key words: maximum correlation kurtosis deconvolution, reciprocating compressor, refined composite multi-scale fuzzy entropy, air valve, fault diagnosis